Compute an estimator for SBS PPS sampled data.
Usage
sbs_pps_estimate(
population,
n,
y,
sample_matrix,
n_bootstraps = 100,
alpha = 0.05,
n_cores = getOption("n_cores", 1)
)
Arguments
- population
Population data frame to be sampled with 4 columns.
Halton numbers
X1-coordinate of population unit
X2-coordinate of population unit
Size measurements of population units
- n
Sample sizes (SBS sample size, PPS sample size).
- y
Sample response values.
- sample_matrix
Sample data frame to be sampled with 6 columns.
Halton numbers
X1-coordinate of population unit
X2-coordinate of population unit
Size measurement of population unit
Weight
Inclusion probability
- n_bootstraps
Number of bootstrap samples.
- alpha
The significance level.
- n_cores
The number of cores to be used for computational tasks (specify 0 for max). This can also be set by calling
options
, e.g.,options(n_cores = 2)
.
Examples
set.seed(112)
# SBS sample size, PPS sample size
sample_sizes <- c(5, 5)
n_population <- 233
k <- 0:(n_population - 1)
x1 <- sample(1:13, n_population, replace = TRUE) / 13
x2 <- sample(1:8, n_population, replace = TRUE) / 8
y <- (x1 + x2) * runif(n = n_population, min = 1, max = 2) + 1
measured_sizes <- y * runif(n = n_population, min = 0, max = 4)
population <- matrix(cbind(k, x1, x2, measured_sizes), ncol = 4)
sample_result <- sbs_pps_sample(population, sample_sizes)
# estimate the population mean and construct a confidence interval
df_sample <- sample_result$sample
sample_id <- df_sample[, 1]
y_sample <- y[sample_id]
sbs_pps_estimates <- sbs_pps_estimate(
population, sample_sizes, y_sample, df_sample,
n_bootstrap = 100, alpha = 0.05
)
print(sbs_pps_estimates)
#> n1 n2 Estimate St.error 95% Confidence intervals
#> 1 5 5 2.849 0.1760682 2.451,3.247
#> n1 n2 Estimate St.error 95% Confidence intervals
#> 1 5 5 2.849 0.1760682 2.451,3.247