Estimate means from RSS or JPS sample.
Usage
rss_jps_estimate(
data,
set_size,
method,
confidence = 0.95,
replace = TRUE,
model_based = FALSE,
pop_size = NULL
)
Arguments
- data
A data frame of
JPS
orRSS
rankings.- set_size
The set size of the ranks.
- method
A method used to sample:
"JPS"
: Judgment-post stratified sampling"RSS"
: Ranked set sampling
- confidence
The confidence level to use.
- replace
Logical (default
TRUE
). Sample with replacement?- model_based
An inference mode:
FALSE
: design based inferenceTRUE
: model based inference using super population model
- pop_size
The population size. Must be provided if
sampling without replacement, or
model_based
isTRUE
.
Value
A data.frame
with the point estimates provided by different types of estimators along with standard
error and confidence intervals.
Examples
# JPS estimator
set.seed(112)
population_size <- 600
# the number of samples to be ranked in each set
H <- 3
with_replacement <- FALSE
sigma <- 4
mu <- 10
n_rankers <- 3
# sample size
n <- 30
rhos <- rep(0.75, n_rankers)
taus <- sigma * sqrt(1 / rhos^2 - 1)
population <- qnorm((1:population_size) / (population_size + 1), mu, sigma)
data <- RankedSetSampling::jps_sample(population, n, H, taus, n_rankers, with_replacement)
data <- data[order(data[, 2]), ]
rss_jps_estimate(
data,
set_size = H,
method = "JPS",
confidence = 0.80,
replace = with_replacement,
model_based = FALSE,
pop_size = population_size
)
#> Estimator Estimate Standard Error 80% Confidence intervals
#> 1 UnWeighted 9.570 0.526 8.88,10.26
#> 2 Sd.Weighted 9.595 0.569 8.849,10.341
#> 3 Aggregate Weight 9.542 0.500 8.887,10.198
#> 4 JPS Estimate 9.502 0.650 8.651,10.354
#> 5 SRS estimate 9.793 0.783 8.766,10.821
#> 6 Minimum 9.542 0.500 8.887,10.198
#> Estimator Estimate Standard Error 80% Confidence intervals
#> 1 UnWeighted 9.570 0.526 8.88,10.26
#> 2 Sd.Weighted 9.595 0.569 8.849,10.341
#> 3 Aggregate Weight 9.542 0.500 8.887,10.198
#> 4 JPS Estimate 9.502 0.650 8.651,10.354
#> 5 SRS estimate 9.793 0.783 8.766,10.821
#> 6 Minimum 9.542 0.500 8.887,10.198
# RSS estimator
set.seed(112)
population_size <- 600
# the number of samples to be ranked in each set
H <- 3
with_replacement <- FALSE
sigma <- 4
mu <- 10
n_rankers <- 3
# sample size
n <- 30
population <- qnorm((1:population_size) / (population_size + 1), mu, sigma)
rho <- 0.75
tau <- sigma * sqrt(1 / rho^2 - 1)
x <- population + tau * rnorm(population_size, 0, 1)
population <- cbind(population, x)
data <- RankedSetSampling::rss_sample(population, n, H, n_rankers, with_replacement)
data <- data[order(data[, 2]), ]
rss_estimates <- rss_jps_estimate(
data,
set_size = H,
method = "RSS",
confidence = 0.80,
replace = with_replacement,
model_based = FALSE,
pop_size = population_size
)
print(rss_estimates)
#> Estimator point.est St.error 80% Confidence Interval
#> 1 RSS-1 9.153 0.766 8.148,10.158
#> 2 Aggregate Weighted 9.064 0.652 8.209,9.919
#> Estimator point.est St.error 80% Confidence Interval
#> 1 RSS-1 9.153 0.766 8.148,10.158
#> 2 Aggregate Weighted 9.064 0.652 8.209,9.919